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Collisions of two localized structures called “dromions,” whose time evolutions are described by
the Davey-Stewartson equations, are investigated numerically for various situations. It is observed
generally that the initial dromions break into four pulses after collisions. The intermediate states of
the collision show interesting behaviors: a new pulse is created and it oscillates during the collision.
It is found that the size of each of the four pulses in the final stage is determined by a balance of
the period of the oscillation and the relative velocity of the initial two dromions. When the masses
of the initial dromions are different, pulses are subject to undergo exchange of the masses due to
collision. These behaviors are expected to be observed in a real system, such as fluid dynamics and

plasma physics.

PACS number(s): 03.40.Kf, 02.60.Cb, 47.35.+i, 52.35.Mw

I. INTRODUCTION

Localized structures in multidimensions are one of the
recent interests for researchers in various fields. They
are worth studying from both a theoretical and a prac-
tical point of view. Dromion [1] is an example of such
a structure that appears in the system described by the
Davey-Stewartson 1 (DS1) equations [2]

1A+ Apr + Ayy — 2|APA+ (Qz + Qy)A =0, (1)
wa = !Aﬁ + |A|§ (2)

One of the characteristics of the dromion solutions
to emphasize is that the main flow A is localized in
two-dimensional space, while the mean flow @ is not.
The mean flow is driven at the boundaries like a one-
dimensional soliton [3] and plays an important role in
conveying the localized structures of the main flow [3,4].
The DS1 equations are derived in many branches of
physics, such as fluid dynamics [5] or plasma physics [6].
It has been shown that an electrostatic ion wave prop-
agating perpendicularly to an applied magnetic field is
well described by the DS1 equations [6]. Then there is
the possibility that the electrostatic potential of the ion
wave will localize two dimensionally like a “bell shape”
and the mean current of the ion will have an effect on
the mean flow.

The stability of dromions can ensure us the observation
of localized structures in real multidimensional systems.
In our previous paper [7] we analyzed numerically the
time evolutions of the dromion solutions. We showed that
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a single dromion propagates stably in the Lyapunov sense
and that in the special case of a collision of two dromions,
the initial dromions break into four stable pulses after the
collision.

This paper is devoted to the detailed numerical anal-
ysis of the stability of dromions against their collisions.
We take various superpositions of the two one-dromion
solutions as initial conditions. There are three main pa-
rameters to determine which characterize the collision: a
relative velocity, a mass ratio of the initial two dromions,
and an impact parameter. We aim to clarify the mech-
anism of the appearance of four stable pulses due to the
collision by changing these parameters.

There are some exact solutions that show the creation
or the annihilation of pulses and these exhibit configura-
tions close to our results. It should be noted, however,
that our cases are different from these exact dromion so-
lutions since the boundary conditions of the mean flows
in our simulations are different from the exact ones [7].
We shall examine whether or not the result of the be-
havior in the simulations can be explained by using the
exact solutions.

It is significant to carry out numerical analyses for the
following reasons. First, little is known about the behav-
ior of the solutions that deviate from exact ones such as
that two one-dromion collisions. Second, the Lyapunov
analysis [8] cannot be used to investigate the stability of
the dromion solutions. This analysis is applicable only
when the equation under consideration has a Hamilto-
nian. In the case of the nonlinear Schrodinger equation,
the stability of localized pulses is studied in detail by this
method. On the contrary, for the dromion solution of
the DS1 equations, we emphasize that the Hamiltonian
cannot be constructed (see the Appendix).

The outline of this paper is as follows. In Sec. II, we
briefly explain the numerical method and boundary con-
ditions of the simulation. In Sec. III, numerical results
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of dromion collisions in various cases are presented. We
compare our results with some of the exact dromion so-
lutions in Sec. IV, and give concluding remarks in Sec.
V.

II. THE ONE-DROMION SOLUTION
AND THE NUMERICAL METHOD

A. The one-dromion solution

Let us summarize the one-dromion solution of the DS1
equations. Equations (1) and (2) can be rewritten in
another form:

tA 4+ Age + Ayy + (U+V)A =0, (3)
Uy = (lAlz)wa Ve = (|A|2)ya (4)

where U = Q, — |A|? and V = Q, — |A|?>. The one-
dromion solution is given by [4]

G
A= —. 5
Here we have chosen
F =1+ exp(m +n}) + exp(nz2 + n3)
+yexp(m +ni +n2 +13),
G = pexp(m + n2). (6)

The parameters in (6) are given as

lp| = 2/ 2k, 1o (v — 1),

m = (kr +ik;)z + (27 + i),
n2 = (I + i)y + (wr + iw;)t,
Q, = —2k,k;,

wp = =2l  wi+Q=k2+12 -k -1

1
In this paper, we take Q; as 1/2. The constants v, k., ki,
l., and [l; are real, which are substantial free parameters
in the one-dromion solution. The constant v determines
an amplitude, k, the width of the pulse in the z direction,
and [/, that in the y direction. The quantities k; and [;
are ¢ and y components of velocity, respectively.

We obtain the potentials U and V', which are deter-
mined by integrating (4):

U =2(InF)gs, V =2(InF)y,. (7
From (7) we can get the cross section of U and V' at the
boundary y,x = —o0, respectively:
8k2 exp(n1 + n}
Ulym-oo = n+), (®)
(1 + exp(m + m7)]
l2 *
Vl:c:—oo — 8 r eXP(Wz + 772) (9)

(1 + exp(nz + m3)]*"

This is crucial for the dromion solution driving the po-
tentials from the boundaries as (8) and (9).

B. Numerical method

Next, we describe the numerical method briefly. We
carry out the computation in a region [—p,p]x[—p,p],
which means the area |z| < p, |y < p in the zy
plane. This area is transformed into [0,27]x[0,27] by
the transformations of variables z — =n(z + p)/p and
y = 7(y + p)/p. We take p as 15 and the grid as 64x64
throughout simulations. The space derivative in (3) is
performed by using the psudospectral method [9] with
periodic boundary conditions. Time integration is per-
formed by both the Burilsh and Store method [10] and
the fourth-order Runge-Kutta method with the appropri-
ate accuracy of adaptive step size control. Equation (4) is
calculated by the fourth-order Runge-Kutta method with
boundary conditions (8) and (9). We use a cubic spline
when the midpoint value between meshes is needed. We
evaluate the first conserved quantity I; = [ |A|*dv with
appropriate accuracy.

Finally, let us examine the accuracy of using the
boundary conditions (8) and (9) in these simulations. In
an exact sense, because the simulations have been per-
formed in the region [—p, p|x[—p, p], we must choose the
value of U(z,y = —p) as the boundary condition of U and
V(z = —p,y) as that of V, respectively. The function of
(8) and (9), however, is useful in a practical sense because
of its simplicity. Of course the two conditions are iden-
tical if we could take p = oco. We compared these two
boundary conditions and the differences between them
are listed in Table I. The two performances correspond
with remarkably high accuracy. Hence, hereafter in this
paper, we choose the cross sections (8) and (9).

III. RESULTS OF SIMULATIONS

In this section we present the numerical results of the
single-dromion collisions. We take superpositions of the
two one-dromion solutions as the initial conditions. It
is obvious that these cannot be exact solutions of the
nonlinear equations since we take only superpositions of
a single-dromion solution. In Sec. IV we shall discuss in
detail the difference between the exact dromion solution
and ours.

We begin the study by changing the relative veloc-
ity and keeping the mass ratio as 1 and the impact
parameter as zero (i.e., head-on collisions of two iden-
tical dromions in various relative velocities). We take
k1, =k2, =l1, =2, = 0.8 and y1 =2 =3.0 and choose
the following cases for the velocities:

(k1;, k2;,11;,12;) = (W/8, —W/8, W/8, —W/8),
W = 3,4,5,6.

We see that the constant of motion I; = [|A|?dv has
been conserved with high accuracy in all of the computa-
tions reported here (the maximum fluctuation of I; dur-
ing calculation is Al /I; ~ 10715).

The collision for W = 5 is shown in Fig. 1. This figure
shows typical aspects of the collision. As two dromions
approach each other, both of them emit their parts and



KATSUHIRO NISHINARI AND TETSU YAJIMA

TABLE I. Time variations of maximum amplitude of |A|? in the two cases of boundaries with
parameters v = 3, k, = I, = 4/5, and k; = l; = 4/8. A single dromion propagates stably in the
Lyapunov sense and there are little differences between them.

Time Exact boundary conditions Infinite boundary conditions 10'°(Difference)
—3.000000 0.3408389281735529 0.3408389281735529 0.0
—1.355706 0.3417900100132564 0.3417900099430654 2.053628
—0.794856 0.3377552920420104 0.3377552918767084 4.894135

0.307718 0.3372104103726524 0.3372104103653520 0.2164950

1.007018 0.3428532835640901 0.3428532834641558 2.914784

1.322360 0.3421235844780174 0.3421235843649262 3.305566

1.900000 0.3421816909319298 0.3421816908061519 3.675763

2.408726 0.3384982192722150 0.3384982190838372 5.565105
2.867634 0.3378210317208404 0.3378210316233613 2.885524

(b)

y

FIG. 1. Solid profiles of |A|? in the case of the collision with parameters y1 = 42 = 3, k1, = k2, = {1, = 12, = 4/5,
kl; =11; = 5/8, and k2; = 12; = —5/8 at (a) t = —3.0, (b) t = —0.76, (c) t = 0.0, (d) ¢t = 0.23, (e) t = 0.5, (f) t = 1.5, and (g)
t = 3.5. After the collision, four pulses appear that propagate almost stably.
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a third pulse is formed midway between them. The
pulse becomes higher and flat on £ = —y, while the two
dromions become smaller [Figs. 1(b) and 1(c)]. These
dromions remain as small side pulses. In the next stage,
the side pulses approach each other and become larger,
again approaching the midway pulse [Fig. 1(d)]. Then,
the midway pulse becomes smaller and the two pulses
on z = y larger. We can observe two small lumps on
z = —y, which are the remainders of the edges of the
midway pulse [Fig. 1(e)]. Finally, the two lumps become
larger and four pulses appear. These four pulses gradu-
ally separate and propagate almost stably [Fig. 1(f) and
1(g)]- There are also small ripples of the main flow along
potentials U and V. The amplitudes of the ripples are
less than 8% of the heights of the pulses. We find that
the two pulses on z = —y are similar. It should be noted
that the aspects of the collision are highly symmetrical
with respect to £ = y throughout the calculations. The-
oretically speaking, the system has this symmetry and
the results of the simulation precisely agree with this.
On the other hand, the two pulses on = y in the final
stage do not look similar. We think that this is because
of the following reasons. First, the system is asymmet-
rical, but not so much with respects to £ = —y (see the
Appendix). Second, ripples generated by the collision
may affect asymmetrically the two pulses on z = y. This
seems to be the more dominant reason. We believe that if
we could realize an ideal condition, so that the ripples are
small enough, the two pulses on z = y would be similar.

The reason that four pulses appear in the final stage
can be understood as follows. Figures 2-5 are the contour
plots of the quantities A, U, and V during collisions with
different relative velocities. It is observed that the four
pulses are located around the cross points of U and V,
where the peaks of the potentials overlap. Considering
(3) and (4), we easily see that the potentials U and V
are attractive in this case. Then the cross points of them
are the most attractive points in the entire region. This
explains that the cross points of potentials attract main
flow A and it is natural that four pulses appear after
the collision. As we have mentioned above, the ripples
are also attracted to them. From this we find that the

t=—1.00 t =0.63 t =3.00

= —0.25

t=1.12

FIG. 2. Contours of the collision of identical dromions,
which has the same size as in Fig. 1, with velocities
(k1 k2:,115,12;) = (6/8, —6/8, 6/8, —6/8). The heights
of the contours are 0.03, 0.1, and 0.2 for |A4|? and 90% of the
maximum values for U and V.
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t=-1.24 t =0.63

t = 3.50

t =—0.38 t =1.50

FIG. 3. Contours of the collision of identical dromions with
velocities (k1;,k2;,11;,12;) = (5/8, —5/8, 5/8, —5/8). The
heights of the contours are chosen to be the same values as

those in Fig. 2.

position of the four cross points plays an important role
in the collision of dromions.

It is interesting to note here that the two pulses on
z = y are larger than those on £ = —y in the cases of
Figs. 2 and 3, although in the cases of Figs. 4 and 5 the
two pulses on z = —y are larger than those on = = y.
Let us explain this phenomenon.

From these figures, especially from Fig. 5, the large
pulse midway on the origin oscillates between two states:
a flat pulse in the direction along # = y and that along
x = —y. This oscillation occurs during the period that
the two pulses of U and those of V' are sufficiently close,
respectively. We can evaluate the periods of the oscil-
lations from these figures. The periods do not change
remarkably in all of these cases and half of a period
T/2=1-1.5. Thus we think that the period may be ir-
relevant to the relative velocity. In order to corrobo-
rate this assertion, we simulate the collision with the ve-
locities (k1;, k2;,11;,12;)=(1/8,—1/8,1/8,—1/8) (Fig. 6).
We observe that the midway pulse oscillates during four
periods of it and confirm the universal nature of the os-
cillation that the half period of each oscillation is 1-1.5.

This oscillation plays an important role in the final
stages of collisions. Before the collision, we observe four
cross points of the mean flow, which play the role of at-
tracting points. As these four points approach, a strong

t = —1.50 t = 0.50 t =3.75

t=-0.75

t =1.50

FIG. 4. Contours of the collision of identical dromions with
velocities (k1;,k2;,11;,12;) = (4/8, —4/8, 4/8, —4/8). The
heights of the contours are chosen to be the same values as
those in Fig. 2.
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t=—1.75 t=0.25 t =3.75
L 1
o —
— To —
@ D
N2 {_'\
t = —0.89 t=1.25

FIG. 5. Contours of the collision of similar dromions with
velocities (k1i,k2;,11:,12;) = (3/8, —3/8, 3/8, —3/8). The
heights of the contours are chosen to be the same values as
those in Fig. 2.

attractive area is formed around the origin. Then, since
structures of the main flow are attracted to this point,
some parts of the dromions flow into this area to form
the midway pulse. The new pulse is strongly bounded to
the attractive area and hence it oscillates because of the
inertia of the fluid. When the pulses of the mean flows
sufficiently separate away in the course of time, the at-
tracting area at the origin will be divided again into four
areas around each of the intersections of the mean flows.
The oscillation stops at this stage and the midway pulse
is separated into four pulses, each of which is located at
the intersection of the mean flows. Therefore, the timing
of the separation of the potentials, which is related to the
relative velocity, and the oscillations of the midway pulse
determine how the initial two dromions break into four
pulses in the final stage of their collision [7]. We call this
mechanism the “distribution law” in this paper. In Figs.
2 and 3 the potentials separate when the midway pulse
is flat along x = y; then, as a result, the two pulses on
z = y are larger than the other two in their final stages.
The situations in Figs. 4 and 5 are opposite those in Figs.
2 and 3. Thus we have explained the differences in the
final stages.

Next, we carry out numerical simulations under other
conditions, by changing the impact parameter slightly

t=-1.75 t=-0.25 t=

L L
[

o

.75

t = —1.00 t =0.12

FIG. 6. Contours of a period of the intermediate oscilla-
tions in the collision with velocities
(kli,kzi,lli,ZZi) = (1/8, —-1/8, 1/8, *—1/8). The heights
of the contours are chosen to be the same values as those in
Fig. 2. The oscillation occurs for four periods in this case and
half of a period is observed to be about T'/2 =1-1.5.

from zero and the mass ratio slightly from unity. Figure
7 shows the typical circumstance of the collision with a
finite impact parameter, which is small compared to the
widths of the pulses of the mean flows. Observing almost
the same phenomena as before, we can conclude that a
small impact parameter does not affect the aspects of the
collision.

In Fig. 8 we change the mass ratio slightly from unity.
Also in this case an oscillating pulse is formed when the
two dromions collide and four pulses appear after the col-
lision. However, there is a difference from the previous
cases in that the larger dromion emits more of itself than
the smaller one. Moreover, in the final stage, the larger
pulse on the line z = y is in the first quadrant and the
smaller one on the same line is in the third, although we
have chosen the opposite mass distribution for the ini-
tial configuration. This means that the initial dromions
exchange their masses with each other through the inter-
action, thus breaking into four pieces.

IV. COMPARISON WITH EXACT DROMION
SOLUTIONS

We investigate the the exact (2,2)-dromion solutions
in this section. By (M, N) dromion we mean a solu-
tion whose mean flow U has asymptotically M pulses in
y — —oo and V has N pulses in ¢ — —oco. Some of
the (2,2)-dromion solutions show configurations similar
to our numerical results, and we are going to examine
whether the distribution law can be explained by them.
An exact (2,2)-dromion solution is written in terms of
Gramian as [11]

F=|I+K®| (10)

where I, K, and ® are 4 x 4 matrices. The matrix I is
the identity and K is a constant Hermitian matrix whose
elements are denoted by K = (amn), m,n € {1,...,4}.
The explicit form of ® is

®— (ffooqs,-qs;dz N 0 )
0 S, vedidy )’

i,j€{1,2}, kle{1,2}. (11)
t=-1.24 t =0.63 t=3.63
t = 0.00 t =1.50

FIG. 7. Contours of the collision with parameters
¥l =~2=3, kl, = k2, = I1, = 12, = 4/5, k1; = 11, = 5/8,
and k2; = 12, = —5/8. The impact parameter is 1.0, which is
evaluated in the computation region [—p, p] X [—p, p]-
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Here an asterisk denotes a complex conjugate. The func-
tions ¢; and 1 are

#: = exp(piz—ip?t), i = exp(—qry+igit),

We should take the real parts of the parameters p; and
gr as positive constants in order to ensure the regularity
of the solution. Let us construct an exact solution that
has the following property: the initial two dromions on
x = y break into four after the collision. We impose the
components of K as follows [11].

First, we assume the condition that there are no
dromions on ¢ = —y at t = —oo:

a1z =0, a24 = azsazs + a1zai1a. (12)

Second, we take the condition that the amplitudes of the
initial two and the final four dromions are not zero:

G14,a23,024 # 0, az3 75 024043, Q14 # G12024,

ai12(az3 — @24043) + a14(as3 — azzasz) # 0. (13)

ik =1,2.

4991

There exist nontrivial a,,,,’s of Egs. (12) and (13) that
generate solutions that are similar to the results of our
computations only in the initial and the final stages.
However, the intermediate states of these solutions are
different in general. Let us consider this in detail.

The intermediate states depend on the behaviors of the
mean flows. For example, the boundary condition of V

at £ = —oo is given by (7), where F is
Folid— Lt gl + —— ot} + asa——— 10}
= — Y2 34—
atal Ut @ta ata
1
+a* h¢ *
T 291
lg1 —Q2|2
+(1 — |asq|?
(1~ lasdl )(‘h +a7) (a2 + a3) (a1 + 43) (a2 + 47)
X191 avhs. (14)

Then the exact V|p=_o derived from (14) is apparently
different from our boundary, which is a superposition of
V| z=—oo Of two one-dromion solutions. The exact one has

y

FIG. 8. Solid profiles of |A|?> in the case of a head-on collision with parameters y1 = 6,72 = 2, k1, = I1, = 0.7,

k2, = 12, = 0.9, k1; = 11, = 5/8, and k2; = I2; = —5/8 at (a) t = —3, (b) t = —0.74, (c) t = 0.0, (d) t = 0.5, and (e)
t = 3.0. (b) and (c) As two dromions approach, the larger dromion emits its part more than the smaller one. In the final stage,
the larger and the smaller pulses on z = y appear in the position opposite that of the initial configuration.
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nonlinear interaction terms, which cannot be removed
by adjusting the parameters. Moreover, the distribution
in the final stage of the exact solutions is determined
by the real parts of p; and g; and minor determinants
of K, not by the velocities of dromions, which are the
imaginary parts of p; and g¢; [11]. In our computations,
however, the distribution in the final stage depends on
the relative velocity. If we want to explain the results of
our computations by the exact solutions, we must further
impose relations between the components of H and the
velocities of dromions. This makes the behaviors of the
boundary conditions U and V more complicated, for a4
appears in (14). In fact, the intermediate states of the
exact solutions vary remarkably by changing parameters
such as the relative velocity of initial two dromions, the
boundary conditions of potentials, and parameters in K
[11,12]. Hence the behavior of |4|? during a collision is
supposed to be different from the behavior found in our
simulations.

Considering the findings above, we think that the oscil-
lation of the intermediate pulse observed in our solutions,
which universally occurs and is independent of the pa-
rameters, cannot exist in the exact solutions. Therefore
we conclude that it is difficult to explain the distribu-
tion law in our simulation by using exact (2,2)-dromion
solutions.

V. CONCLUDING REMARKS

In this paper, collisions of dromions are studied in de-
tail numerically. We confirm that, in general, the initial
two dromions will break into four pulses after collisions.
This holds even if we make small changes on the mass
ratio and the impact parameter. In addition, in the case
of the collision of dromions with different masses, numer-
ical results show that the initial two dromions exchange
their masses through the collision.

The four pulses in the final stage are located around
the cross point of the potentials, the area where the peaks
of the mean flows intersect, and these intersections are
the most attractive points in this system. We think that
these four pulses would propagate stably if the ripples
generated by the collision were sufficiently small. This is
because if they sufficiently separate each other, then the
interaction among pulses disappear; we can consider the
state to be a special case of a superposition of four one-
dromion solutions. The numerical results in this paper
reveal the significant role of the mean flows in forming
localized structures given by the DS1 equations. As we
have already mentioned, these flows act as attractive po-
tentials, so that the intersections of them maintain the
localized structures of the main flow.

We have also observed the phenomenon that the inter-
mediate pulse created as a result of a collision shows an
oscillation while the potentials sufficiently overlap. The
pulse has been observed to oscillate between two config-
urations, where it is flat along the line £ = +y. One of
the remarkable feature of the oscillation is that the pe-
riod is independent of the relative velocity. Moreover, we
find the distribution law that the state of the oscillation

and the relative velocity determine the mass allocation
of four pulses in the final stage.

As mentioned before, the DS1 equations are derived
in a magnetized plasma [6]. Then a localized ion pulse
will surely be formed and convey the plasma energy sta-
bly. The numerical results show that the energy is not
scattered away even if they collide and the behavior of
dromions obeys the distribution law.

At present, we think that it is difficult to explain the
distribution law by using exact (2,2)-dromion solutions.
Therefore, this law is considered to be essentially differ-
ent. Further analyses on the mechanism of the oscillation
and the distribution law and applications in real systems
are problems to be studied in the future.
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APPENDIX

In this Appendix we discuss the problem of construct-
ing the Hamiltonian of the DS1 equations for the dromion
solution. For sufficiently localized pulses of A and Q, we
can get (1) and (2) from variational problems

0H 6H

(—S—E = 'LAt, E = 0, (Al)

where the Hamiltonian is
- [ (IAzlz 14,7 + AP

~(@a + QAP + Q—g%i)dv' (A2)

In the calculation of the variation in (A1), surface terms
must vanish to obtain the DS1 equations. When we con-
sider a dromion solution, the variable A decays expo-
nentially in all directions. Then all of the surface terms
disappear in the variation § H/§A* and we obtain (1).
On the other hand, we cannot succeed in having (2) by
0H/6Q because the function Q is not localized. The vari-
ation of the last term in (A2) is
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1 1 r—oo
a/indeV = 5/[Qy6Q]m=—oody

+5 [1:0Q1==do ~ [ QuysQay.
(43)

The first two terms of the right-hand side of (A3) must
vanish to get a nontrivial Hamiltonian. This occurs only
when the cross sections of Q at ¢ = +o0o and y = +o00
coincide with those at £ = —oo and y = —o0, respec-
tively. However, it is easily seen that these conditions

are not satisfied in the case of the dromion solution, be-
cause it is not symmetrical with respect to the z and y
axes. Thus we cannot construct the Hamiltonian in this
case. Consequently, the Lyapunov analysis is not appli-
cable to the examination of the stability of a dromion.
This fact is quite natural from the physical point of view
[7]. A dromion is located at a cross point of the peaks
of two mean flows and we have to drive these mean flows
from the boundaries of a system. For this reason, this
system has an energy interaction with an external sys-
tem through its boundaries. Therefore, it is apparent
that this system is not a Hamiltonian system.
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